您现在的位置是: 首页 > 教育新闻 教育新闻

高考文科数列公式,文科高考数学数列

tamoadmin 2024-06-06 人已围观

简介1.文科高考数学必背公式2.求数列求通式的方法3.高考有没有哪位大哥能整理一个高考数学(文科)会用到的所有公式给我。。。麻烦了。。。拜托了。。4.高三数列(文科)Sn=2*An-3*2的n次方+4(n=1,2,3,4....)Sn=2An - 3nS(n-1) = 2A(n-1)-3(n-1)An=Sn-S(n-1)=2An-2A(n-1)+3An +3 = 2A(n-1)就是:(An-3) =

1.文科高考数学必背公式

2.求数列求通式的方法

3.高考有没有哪位大哥能整理一个高考数学(文科)会用到的所有公式给我。。。麻烦了。。。拜托了。。

4.高三数列(文科)Sn=2*An-3*2的n次方+4(n=1,2,3,4....)

高考文科数列公式,文科高考数学数列

Sn=2An - 3n

S(n-1) = 2A(n-1)-3(n-1)

An=Sn-S(n-1)=2An-2A(n-1)+3

An +3 = 2A(n-1)

就是:(An-3) = 2[A(n-1)-3]

An-3构成等比数列,An-3 = (A1-3) *2^(n-1)

An= 3+ (A1-3)*2^(n-1)

如果存在等差子列,设为k<m<n项

则要求2^(k-1) + 2^(n-1) = 2^(m-1) *2

提取出2^(k-1)得到

1+2^(n-k) = 2^(m-k+1)

这个式子只有当n=k或者m-k+1=0才可能成立(否则偶数相减不可能等于1)

因为m,n,k互不相等,只有当k=m+1似乎才可能,而此时等式右侧是1,左侧是1加上一个正数,是不可能成立的

因此不存在这样的等差子列

文科高考数学必背公式

哦,好的,我来回答,题目下面有答案,解法我不说了,至于错位相减,是由于an/bn是等比数列与等差数列之商,故将Sn写出后,将Sn乘以公比q,然后将下式的第二项与第一项对齐,依次写出,上式前面多一项,而下式后面会多一项q

an/bn,下式减上式,则中间的各项之差成等比数列,再用等比公式算,会了?,看起来很麻烦吧,动手做一下吧,很容易掌握的,加油,

求数列求通式的方法

一、高中数学诱导公式全集:

常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于π/2*k ±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

这十二字口诀的意思就是说:

第一象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内切函数是“+”,弦函数是“-”;

第四象限内只有余弦是“+”,其余全部是“-”.

上述记忆口诀,一全正,二正弦,三内切,四余弦

还有一种按照函数类型分象限定正负:

函数类型 第一象限 第二象限 第三象限 第四象限

正弦 ...........+............+............—............—........

余弦 ...........+............—............—............+........

正切 ...........+............—............+............—........

余切 ...........+............—............+............—........

同角三角函数基本关系

同角三角函数的基本关系式

倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看或参考资料链接)

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

万能公式

万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

万能公式推导

附推导:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

(因为cos^2(α)+sin^2(α)=1)

再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推导

附推导:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

★记忆方法:谐音、联想

正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

余弦三倍角:4元3角 减 3元(减完之后还有“余”)

☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

★另外的记忆方法:

正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方

余弦三倍角: 司令无山 与上同理

和差化积公式

三角函数的和差化积公式

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

积化和差公式

三角函数的积化和差公式

sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]

和差化积公式推导

附推导:

首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

高考有没有哪位大哥能整理一个高考数学(文科)会用到的所有公式给我。。。麻烦了。。。拜托了。。

一、定义法

直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.

例1.等差数列 是递增数列,前n项和为 ,且 成等比数列, .求数列 的通项公式

解:设数列 公差为

∵... 成等比数列,∴... ,

即... ,得...

∵ ,∴ ……………………①

∴ …………②

由①②得:...... ,

点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

二、累加法

求形如an-an-1=f(n)(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n—1得到n—1个式子累加求得通项。

例2.已知数列{an}中,a1=1,对任意自然数n都有 ,求 .

解:由已知得 ,

,……,

, ,

以上式子累加,利用 得 - =

= ,

点评:累加法是反复利用递推关系得到n—1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n—1项的和,要注意求和的技巧.

三、迭代法

求形如 (其中 为常数) 的数列通项,可反复利用递推关系迭代求出。

例3.已知数列{an}满足a1=1,且an+1 = +1,求 .

解:an=3an-1+1=3(3an-2+1)+1=32an-2+3 1+1=…=3n-1a1+3n-2 1+3n-3 1+…+3 1+1=

点评:因为运用迭代法解题时,一般数据繁多,迭代时要小心计算,应避免计算错误,导致走进死胡同.

四、公式法

若已知数列的前 项和 与 的关系,求数列 的通项 可用公式 求解。

例4.已知数列 的前 项和 满足 .求数列 的通项公式;

解:由

当 时,有

……,

经验证 也满足上式,所以

点评:利用公式 求解时,要注意对n分类讨论,但若能合写时一定要合并.

五、累乘法

对形如 的数列的通项,可用累乘法,即令n=2,3,…n—1得到n—1个式子累乘求得通项。

例5.已知数列 中, ,前 项和 与 的关系是 ,求通项公式 .

解:由 得

两式相减得: ,

将上面n—1个等式相乘得:

点评:累乘法是反复利用递推关系得到n—1个式子累乘求出通项,这种方法最终转化为求{f(n)}的前n—1项的积,要注意求积的技巧.

六、分n奇偶讨论法

在有些数列问题中,有时要对n的奇偶性进行分类讨论以方便问题的处理。

例6.已知数列{an}中,a1=1且anan+1=2 ,求通项公式.

解:由anan+1=2 及an+1an+2=2 ,两式相除,得 = ,则a1,a3,a5,…a2n-1,…和a2,a4,a6,…a2n,…都是公比为 的等比数列,又a1=1,a2= ,则:(1)当n为奇数时, ;(2)当n为偶数时, .综合得

点评:对n的奇偶性进行分类讨论的另一种情形是题目中含有 时,分n为奇偶即可自然引出讨论.分类讨论相当于增加条件,变不定为确定.注意最后能合写时一定要合并。这是近年高考的新热点,如05年高考江西卷文科第21题.

七、化归法

想方设法将非常规问题化为我们熟悉的数列问题来求通项公式的方法即为化归法.同时,这也是我们在解决任何数学问题所必须具备的一种思想。

例7.已知数列 满足

求an

解:当

两边同除以 ,

即 成立,

∴ 首项为5,公差为4的等差数列.

点评:本题借助 为等差数列得到了 的通项公式,是典型的化归法.常用的化归还有取对数化归,待定系数化归等,一般化归为等比数列或等差数列的问题,是高考中的常见方法.

八、“归纳—猜想—证明”法

直接求解或变形都比较困难时,先求出数列的前面几项,猜测出通项,然后用数学归纳法证明的方法就是“归纳—猜想—证明”法.

例8.若数列 满足: 计算a2,a3,a4的值,由此归纳出an的公式,并证明你的结论.

解:∵a2=2 a1+3×2°=2×1+3×2°,

a3=2(2×1+3×2°)+3×21=22×1+2×3×21,

a4=2(22×1+2×3×21)+3×22=23×1+3×3×22;

猜想an=2n-1+(n-1)×3×2n-2=2n-2(3n-1);

用数学归纳法证明:

1°当n=1时,a1=2-1×=1,结论正确;

2°假设n=k时,ak=2k-2(3k-1)正确,

∴当n=k+1时,

= 结论正确;

由1°、2°知对n∈N*有

点评:利用“归纳—猜想—证明”法时要小心猜测,切莫猜错,否则前功尽弃;用数学归纳法证明时要注意格式完整,一定要使用归纳假设.

九、待定系数法(构造法)

求递推式如 (p、q为常数)的数列通项,可用待定系数法转化为我们熟知的数列求解,相当如换元法。

例9.已知数列{an}满足a1=1,且an+1 = +2,求 .

解:设 ,则 ,

, 为等比数列,

点评:求递推式形如 (p、q为常数)的数列通项,可用迭代法或待定系数法构造新数列an+1+ =p(an+ )来求得,也可用“归纳—猜想—证明”法来求,这也是近年高考考得很多的一种题型.

例10.已知数列 满足 求an.

解:将 两边同除 ,得 ,变形为 .

设 ,则 .令 ,

得 .条件可化成 ,

数列 为首项, 为公差的等比数列.

.因 ,所以 =

得 = .

点评:递推式为 (p、q为常数)时,可同除 ,得 ,令 从而化归为 (p、q为常数)型.

例11.已知数列 满足 求an.

解:设 ....

展开后,得 .....

由 ,解得.... ,

条件可以化为

得数列... 为首项,... 为公差的等比数列, .问题转化为利用累加法求数列的通项的问题,解得 .

点评:递推式为 (p、q为常数)时,可以设 ,其待定常数s、t由 求出,从而化归为上述已知题型.

高三数列(文科)Sn=2*An-3*2的n次方+4(n=1,2,3,4....)

正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径

余弦定理:a^2=b^2+c^2-2bc*cosA

sin(A+B)=sinC

sin(A+B)=sinAcosB+sinBcosA

sin(A-B)=sinAcosB+sinBcosA

sin2A=2sinAcosA

cos2A=2(cosA)^2-1=(cosA)^2-(sinA)^2=1-2(sinA)^2

tan2A=2tanA/[1-(tanA)^2]

(sinA)^2+(cosA)^2=1

解三角形大概常用的就这些

概率似乎没有什么现成的公式可以套

立体几何求点面距离常用等积法,构建一个四面体,用另外一对底面和高算出体积再除以所求点面距作为高对应的底面的面积

计算二面角常用三垂线定理,或者就是直接构造,原则是要方便计算,不要构造出来的角每条边都要算半天就得不偿失了

圆锥曲线似乎没有现成的公式,但有一些常用方法,比如设点消点,或者椭圆的时候还可以用参数方程计算

数列就更简单了,一般就是求通项然后证明不等式,不等式就没办法了,我也不能保证每次都证出来,通项常用的方法就是改变下标,比如Sn-S(n-1)=an

直接求不出可以尝试着求倒数的通项,很可能很好求 数学高考基础知识、常见结论详解

二、函数

一、映射与函数:

(1)映射的概念: (2)一一映射:(3)函数的概念:

如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。

函数 的图象与直线 交点的个数为 个。

二、函数的三要素: , , 。

相同函数的判断方法:① ;② (两点必须同时具备)

(1)函数解析式的求法:

①定义法(拼凑):②换元法:③待定系数法:④赋值法:

(2)函数定义域的求法:

① ,则 ; ② 则 ;

③ ,则 ; ④如: ,则 ;

⑤含参问题的定义域要分类讨论;

如:已知函数 的定义域是 ,求 的定义域。

⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。

(3)函数值域的求法:

①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;

②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;

④换元法:通过变量代换转化为能求值域的函数,化归思想;

⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;

⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

求下列函数的值域:① (2种方法);

② (2种方法);③ (2种方法);

三、函数的性质:

函数的单调性、奇偶性、周期性

单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)

导数法(适用于多项式函数)

复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;

f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。

判别方法:定义法, 图像法 ,复合函数法

应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

应用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数

五、反函数:

(1)定义:

(2)函数存在反函数的条件: ;

(3)互为反函数的定义域与值域的关系: ;

(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。

(5)互为反函数的图象间的关系: ;

(6)原函数与反函数具有相同的单调性;

(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

如:求下列函数的反函数: ; ;

七、常用的初等函数:

(1)一元一次函数: ,当 时,是增函数;当 时,是减函数;

(2)一元二次函数:

一般式: ;对称轴方程是 ;顶点为 ;

两点式: ;对称轴方程是 ;与 轴的交点为 ;

顶点式: ;对称轴方程是 ;顶点为 ;

①一元二次函数的单调性:

当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数;

②二次函数求最值问题:首先要采用配方法,化为 的形式,

Ⅰ、若顶点的横坐标在给定的区间上,则

时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;

时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;

Ⅱ、若顶点的横坐标不在给定的区间上,则

时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;

时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;

有三个类型题型:

(1)顶点固定,区间也固定。如:

(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。

(3)顶点固定,区间变动,这时要讨论区间中的参数.

③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则:

根的情况

等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根

充要条件

注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。

(3)反比例函数:

(4)指数函数:

指数运算法则: ; ; 。

指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。

(5)对数函数:

指数运算法则: ; ; ;

对数函数:y= (a>o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。

注意:(1) 与 的图象关系是 ;

(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。

(3)已知函数 的定义域为 ,求 的取值范围。

已知函数 的值域为 ,求 的取值范围。

六、 的图象:

定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。

七、补充内容:

抽象函数的性质所对应的一些具体特殊函数模型:

① 正比例函数

② ; ;

③ ; ;

④ ;

三、导 数

1.求导法则:

(c)/=0 这里c是常数。即常数的导数值为0。

(xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)

2.导数的几何物理意义:

k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。

V=s/(t) 表示即时速度。a=v/(t) 表示加速度。

3.导数的应用:

①求切线的斜率。

②导数与函数的单调性的关系

一 与 为增函数的关系。

能推出 为增函数,但反之不一定。如函数 在 上单调递增,但 ,∴ 是 为增函数的充分不必要条件。

二 时, 与 为增函数的关系。

若将 的根作为分界点,因为规定 ,即抠去了分界点,此时 为增函数,就一定有 。∴当 时, 是 为增函数的充分必要条件。

三 与 为增函数的关系。

为增函数,一定可以推出 ,但反之不一定,因为 ,即为 或 。当函数在某个区间内恒有 ,则 为常数,函数不具有单调性。∴ 是 为增函数的必要不充分条件。

函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。

四单调区间的求解过程,已知 (1)分析 的定义域;(2)求导数 (3)解不等式 ,解集在定义域内的部分为增区间(4)解不等式 ,解集在定义域内的部分为减区间。

我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数 在某个区间内可导。

③求极值、求最值。

注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。

f/(x0)=0不能得到当x=x0时,函数有极值。

但是,当x=x0时,函数有极值 f/(x0)=0

判断极值,还需结合函数的单调性说明。

4.导数的常规问题:

(1)刻画函数(比初等方法精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

四、不等式

一、不等式的基本性质:

注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。

(2)注意课本上的几个性质,另外需要特别注意:

①若ab>0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。

②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。

③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。

④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小

二、均值不等式:两个数的算术平均数不小于它们的几何平均数。

若 ,则 (当且仅当 时取等号)

基本变形:① ; ;

②若 ,则 ,

基本应用:①放缩,变形;

②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。

当 (常数),当且仅当 时, ;

当 (常数),当且仅当 时, ;

常用的方法为:拆、凑、平方;

如:①函数 的最小值 。

②若正数 满足 ,则 的最小值 。

三、绝对值不等式:

注意:上述等号“=”成立的条件;

四、常用的基本不等式:

(1)设 ,则 (当且仅当 时取等号)

(2) (当且仅当 时取等号); (当且仅当 时取等号)

(3) ; ;

五、证明不等式常用方法:

(1)比较法:作差比较:

作差比较的步骤:

⑴作差:对要比较大小的两个数(或式)作差。

⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。

⑶判断差的符号:结合变形的结果及题设条件判断差的符号。

注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。

(2)综合法:由因导果。

(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……

(4)反证法:正难则反。

(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。

放缩法的方法有:

⑴添加或舍去一些项,如: ;

⑵将分子或分母放大(或缩小)

⑶利用基本不等式,如: ;

⑷利用常用结论:

Ⅰ、 ;

Ⅱ、 ; (程度大)

Ⅲ、 ; (程度小)

(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如:

已知 ,可设 ;

已知 ,可设 ( );

已知 ,可设 ;

已知 ,可设 ;

(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;

六、不等式的解法:

(1)一元一次不等式:

Ⅰ、 :⑴若 ,则 ;⑵若 ,则 ;

Ⅱ、 :⑴若 ,则 ;⑵若 ,则 ;

(2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论:

(5)绝对值不等式:若 ,则 ; ;

注意:(1).几何意义: : ; : ;

(2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:

⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若 则 ;②若 则 ;③若 则 ;

(3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

(4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。

(6)分式不等式的解法:通解变形为整式不等式;

⑴ ;⑵ ;

⑶ ;⑷ ;

(7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。

(8)解含有参数的不等式:

解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:

①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.

②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.

③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要分 、 、 讨论。

五、数列

本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.

②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

体思想求解.

(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

一、基本概念:

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列{an}的通项公式an:

6、 数列的前n项和公式Sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

二、基本公式:

9、一般数列的通项an与前n项和Sn的关系:an=

10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:Sn= Sn= Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn= Sn=

三、有关等差、等比数列的结论

14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

15、等差数列{an}中,若m+n=p+q,则

16、等比数列{an}中,若m+n=p+q,则

17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

19、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an bn}、 、 仍为等比数列。

20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

23、三个数成等比的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

24、{an}为等差数列,则 (c>0)是等比数列。

25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。

26. 在等差数列 中:

(1)若项数为 ,则

(2)若数为 则, ,

27. 在等比数列 中:

(1) 若项数为 ,则

(2)若数为 则,

四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

28、分组法求数列的和:如an=2n+3n

29、错位相减法求和:如an=(2n-1)2n

30、裂项法求和:如an=1/n(n+1)

31、倒序相加法求和:如an=

32、求数列{an}的最大、最小项的方法:

① an+1-an=…… 如an= -2n2+29n-3

② (an>0) 如an=

③ an=f(n) 研究函数f(n)的增减性 如an=

33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:

(1)当 >0,d<0时,满足 的项数m使得 取最大值.

(2)当 <0,d>0时,满足 的项数m使得 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

六、平面向量

1.基本概念:

向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

2. 加法与减法的代数运算:

(1) .

(2)若a=( ),b=( )则a b=( ).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = -

且有| |-| |≤| |≤| |+| |.

向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);

+0= +(- )=0.

3.实数与向量的积:实数 与向量 的积是一个向量。

(1)| |=| |·| |;

(2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0.

(3)若 =( ),则 · =( ).

两个向量共线的充要条件:

(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .

(2) 若 =( ),b=( )则 ‖b .

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.

4.P分有向线段 所成的比:

设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。

当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;

分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: .

5. 向量的数量积:

(1).向量的夹角:

已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。

(2).两个向量的数量积:

已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos .

其中|b|cos 称为向量b在 方向上的投影.

(3).向量的数量积的性质:

若 =( ),b=( )则e· = ·e=| |cos (e为单位向量);

⊥b ·b=0 ( ,b为非零向量);| |= ;

cos = = .

(4) .向量的数量积的运算律:

·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.

6.主要思想与方法:

本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。

七、立体几何

1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

能够用斜二测法作图。

2.空间两条直线的位置关系:平行、相交、异面的概念;

会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

3.直线与平面

①位置关系:平行、直线在平面内、直线与平面相交。

②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。

③直线与平面垂直的证明方法有哪些?

④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}

⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.

4.平面与平面

(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)

(2)掌握平面与平面平行的证明方法和性质。

(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。

(4)两平面间的距离问题→点到面的距离问题→

(5)二面角。二面角的平面交的作法及求法:

①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;

②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。

③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?

具体的公式

高中数学公式大全

高中数学常用公式及常用结论

高中数学常用公式及常用结论

1. 元素与集合的关系

, .

2.德摩根公式

.

.

5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.

6.二次函数的解析式的三种形式

(1)一般式 ;

(2)顶点式 ;

(3)零点式 .

7.解连不等式 常有以下转化形式

.

8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .

9.闭区间上的二次函数的最值

二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:

(1)当a>0时,若 ,则 ;

, , .

(2)当a<0时,若 ,则 ,若 ,则 , .

10.一元二次方程的实根分布

依据:若 ,则方程 在区间 内至少有一个实根 .

设 ,则

(1)方程 在区间 内有根的充要条件为 或 ;

(2)方程 在区间 内有根的充要条件为 或 或 或 ;

(3)方程 在区间 内有根的充要条件为 或 .

教育网站大全

延安数学教育网站

数学网站联盟

快乐数学

数学教育教学资源中心

数学中国

麦斯数学网

1.

Sn=2*An-3*(2^n)+4

n=1时

A1=S1=2A1-3*2+4

A1=2

n>1时

S(n-1)=2*A(n-1)-3*(2^(n-1))+4

与Sn表达式相减

An=2An-2A(n-1)-3*(2^(n-1))

An=2A(n-1)+3*(2^(n-1))

两边除以2^n

An/(2^n)=A(n-1)/(2^(n-1))+3/2

所以数列{An/(2^n)}是以A1/2=1为首项,3/2为公差的等差数列

An=(2^n)*[(3n-1)/2]

2.

Sn-4=2*An-3*2^n

=(2^n)*(3n-1)-3*2^n

=(2^n)*(3n-4)

求和用错位相减法

Tn=(2^1)*(3*1-4)+(2^2)*(3*2-4)+……+(2^n)*(3*n-4)

2Tn=(2^2)*(3*1-4)+(2^3)*(3*2-4)+……+(2^(n+1))*(3*n-4)

-Tn=-(2^1)+3(2^2)+3(2^3)+……+3(2^n)-(2^(n+1))*(3*n-4)

Tn=(2^1)-3(2^2)-3(2^3)-……-3(2^n)+(2^(n+1))*(3*n-4)

Tn=2-3{(2^2)(2^[(n-1)-1]/(2-1)}+(2^(n+1))*(3*n-4)

Tn=14-3*[2^(n+1)]+(2^(n+1))*(3*n-4)

但愿我没有算错。。你自己也算一遍检验检验吧~

文章标签: # cos # sin # 函数